Interactive Visual Text Analytics for Decision Making

Shixia Liu Microsoft Research Asia

Text is Everywhere

- We use documents as primary information artifact in our lives
- Our access to documents has grown tremendously in recent years due to networking infrastructure
 - -WWW
 - Digital libraries

— ...

Big Question

• What can information visualization provide to help users in understanding and gathering information from text and document collections?

Outline

- Example tasks in text analytics
- Visually analyzing textual information
 - Dynamic word cloud
 - Topic-based visual text summarization
 - TextFlow: towards better understanding of evolving topics in text
- Future work

How can I find information buried inside the piles of text?

Terracotta Army - Wikipedia, the free encyclopedia [2] Mount Li is also where the material to make the terracotta warriors originated. In addition to the warriors, an entire man-made necropolis for the ... en.wikipedia.org/wiki/Terracotta Army - 56k - Cached - Similar pages Museum of Qin Terra Cotta Warriors and Horses The Terka Cotta Warriors and Horses are the most significant archeological excavations of the 20th century. It is a sight not to be missed by any visitor to ... www.travelchinaguide.com/attraction/shaanxi/xian/terra_cotta_army/ - 17k -Cached - Similar pages Terra Cotta Pit 1 Museum of Qin Terra Cotta Warriors and Horses: Pit 1 ... There are more than 6000 terracotta warriors and horses in Pit No. 1, marshaled into battle line ... www.travelchinaguide.com/cityguides/xian/terracotta.htm - 14k - Cached - Similar page Terracotta Warriors: The Museum Terracotta Warriors Museum, Dorchester, brings together all the wonder of the discovery of the many treasures of the first Emperor of China. www.terracottawarriors.co.uk/ - 14k - Cached - Similar pages Terracotta Warriors - A Fantastic Tourist Attraction in China ... Terracotta Warriors Tours: Private tours to Terracotta Warriors, and other Xi'an ... 1 which contains 6000 life-size terracotta warriors and horses. ... www.chinavista.com/travel/terracotta/warrior01.html - 6k - Cached - Similar pages Terracotta Warriors - A Fantastic Tourist Attraction in China ... Terracotta Warriors Tours: Private tours to Terracotta Warriors, ... Let us go to Xi'an to have a look at the Museum of Qin Terracotta Warriors. ... www.chinavista.com/travel/terracotta/main.html - 6k - Cached - Similar pages

Information finding

What is in my text?

What's	inside	the
NHTSA	Data:	

450,000+

What are the major causes of injuries

70,000+ patient emergency room records

What did my customers say about my hotels

3000+ customerposted reviews

What is in my text?

Which hotel features do my customers like/dislike

3000+ customer reviews

How customers' sentiment have changed toward my hotels

3000+ customerposted reviews

How do customers feel about my new product launch

thousands of eopinion postings

What is in my text?

What are the correlations of tire problems and highway death in the NHTSA Data:

450,000+ documents What are the correlations of patient gender and the cause of injury

70,000+ patient emergency room records

Compare the customers' attitude toward our product with theirs for our competitors

thousands of eopinion postings

Decision Making and Problem Solving: Text Analysis++

Major Challenges

• Huge amounts of complex information

- Understanding the meanings of free text is just hard
- Performing analysis on top of that is harder

Different people want different things

- No one-size-fits-all solutions
- People may not know what they want
 - "Tell me something I don't know"
 - "I will tell you when I see it"

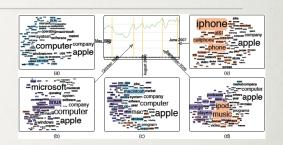
Outline

- Example tasks in text analytics
- Visually analyzing textual information
 - Dynamic word cloud
 - TIARA: topic-based visual text summarization
 - TextFlow: towards better understanding of evolving topics in text
- Future work

Selected Projects

Dynamic word cloud

Illustrate content evolution trend

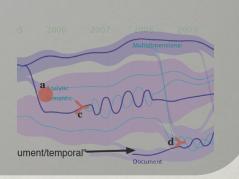


TIARA

Topic-based visual text summarization and analysis

TextFlow

 Towards better understanding of evolving topics in text



Dynamic Word Cloud

Word clouds for content overview

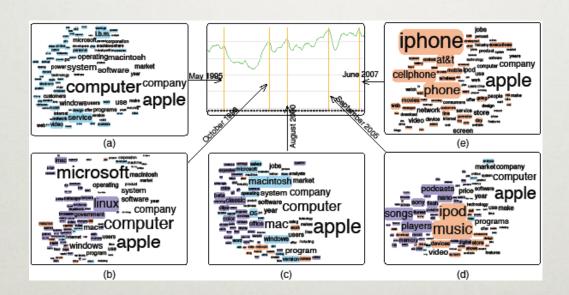
- Aesthetic issues
- Inadequate for temporal patterns

Standard time chart: trend

Inadequate for correlations

Our Solution

- A evolution trend chart + word clouds
 - Measure the evolution
 - Ensure the semantic coherence between clouds



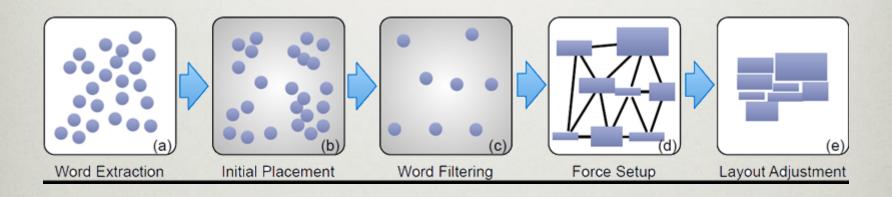
Evolution Measurement

 Conditional entropy: measure the amount of information contained by X_i but not by X_j

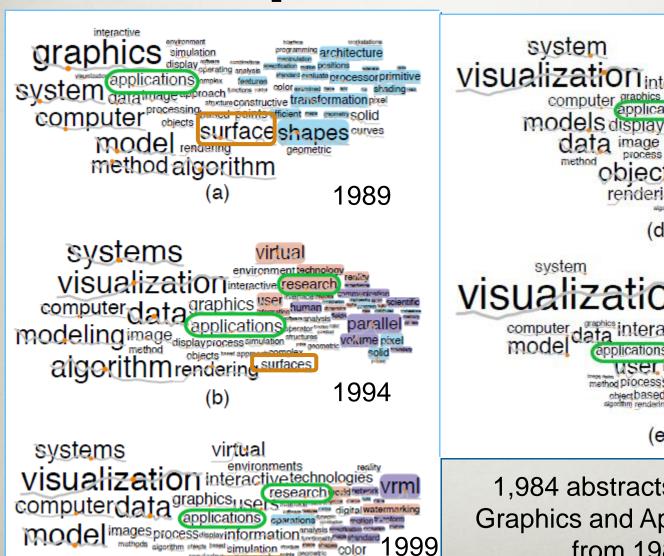
$$S(X_i) = \sum_{j=-w/2}^{w/2} t_j H(X_i | X_{i+j}) = \sum_{j=-w/2}^{w/2} t_j (H(X_i) - H(X_i; X_{i+j}))$$

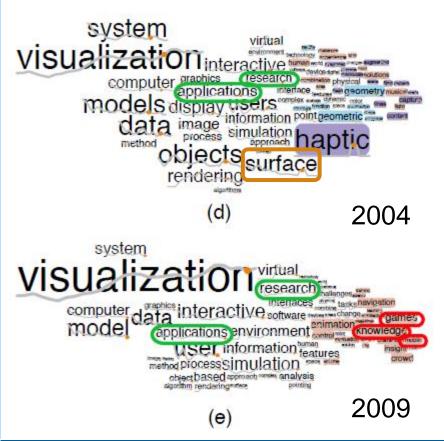
Word Cloud Layout

- Geometry meshes to ensure the semantic coherence
 - Semantically related words stay together
 - The same word in different clouds stay at the similar place



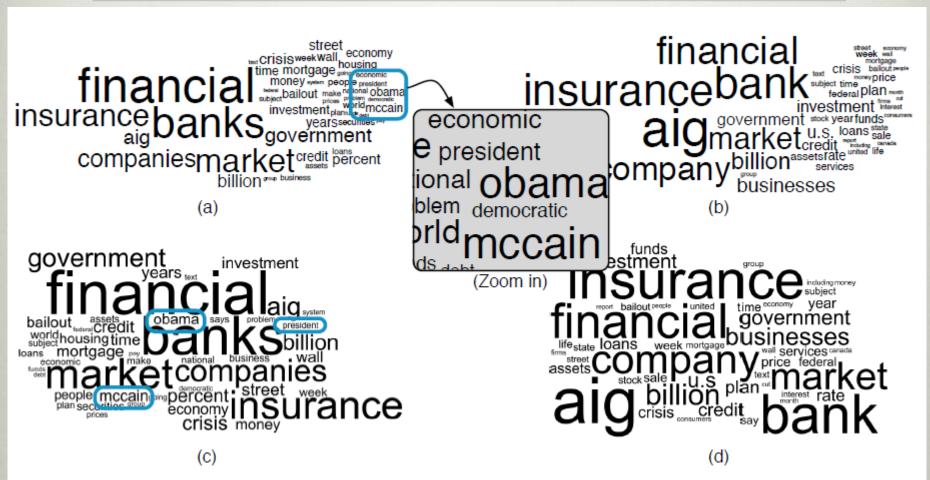
Example: CG&A Abstracts





1,984 abstracts IEEE Computer Graphics and Applications (CG&A) from 1981 to 2009 16

Comparison with Wordle

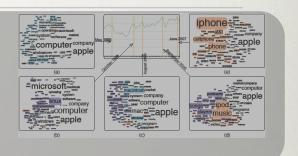


13,828 news articles

Selected Projects

Dynamic word cloud

Illustrate content evolution trend

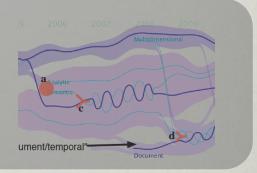


TIARA

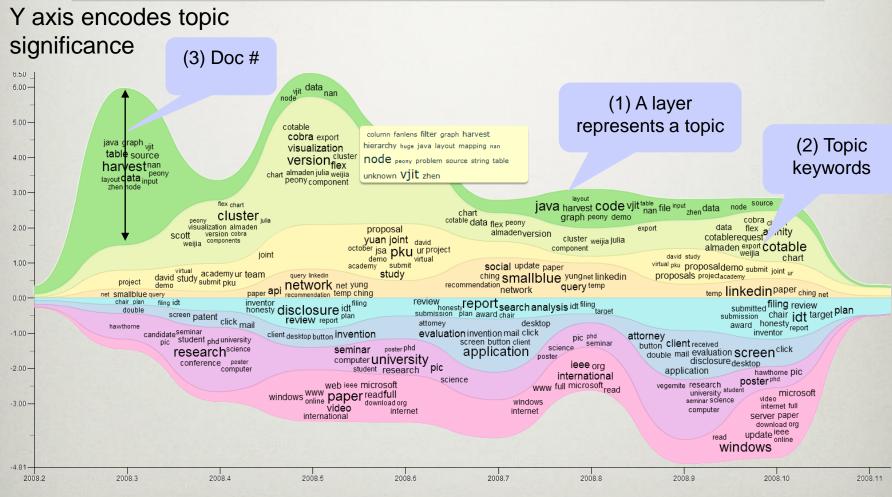
Topic-based visual text summarization and analysis

TextFlow

 Towards better understanding of evolving topics in text



Demo



X axis encodes time

~10,000 emails in 2008

Demo

Interactive, Time-based Visual Email Summarization

Shixia Liu, Michelle X Zhou, Shimei Pan, Weihong Qian, Weijia Cai, Xiaoxiao Lian

IBM Research

Key Challenges

Summarize text corpora

- Huge amounts of complex information
- Time-varying

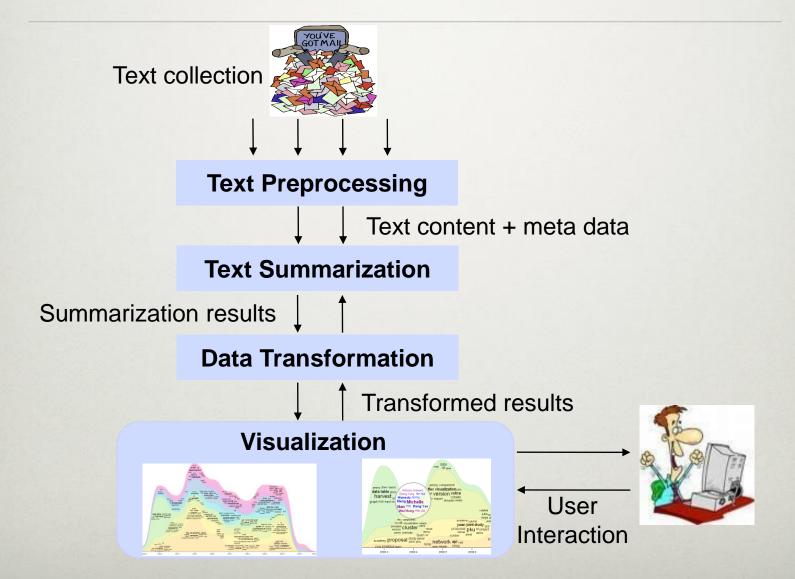
Visually explain summarization results

Consistent visualization

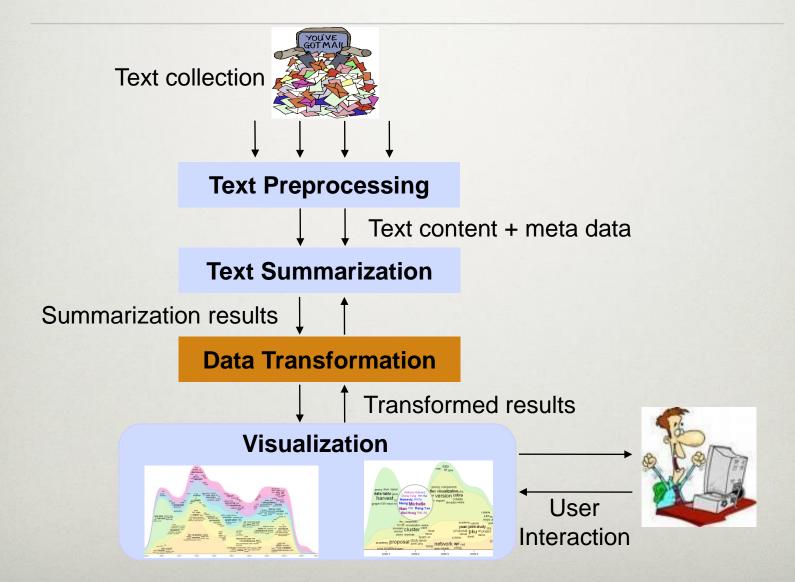
Provide feedback or articulate their needs

Imperfect summarization results or varied user needs

TIARA Overview

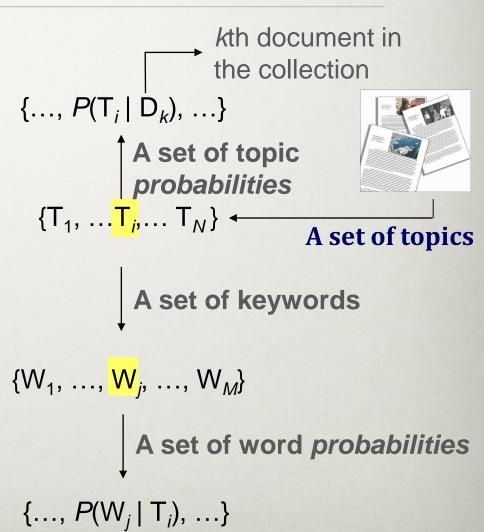


TIARA Technical Focus

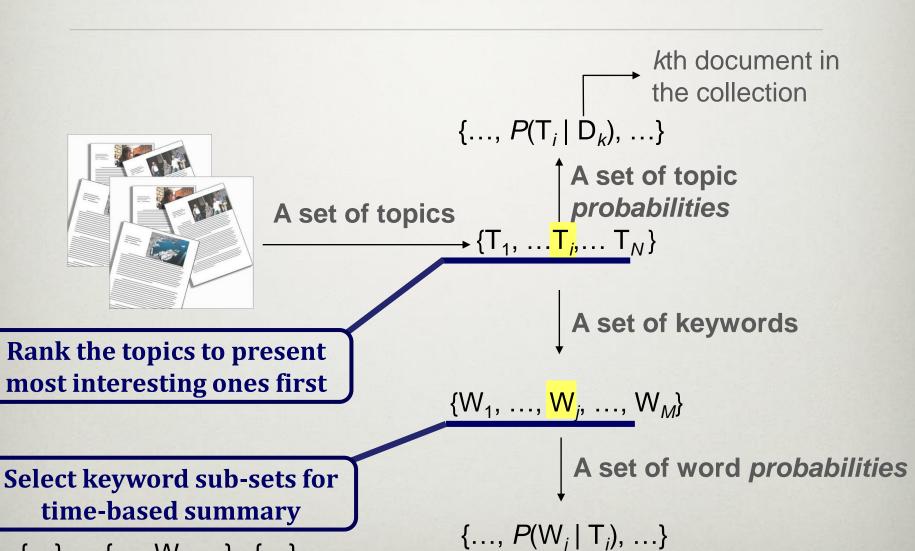


Text Summarization

- Latent Dirichlet
 Allocation (LDA)
 model [Blei et al. 03]
 - High portability
 - High compaction rate for scalability
 - A finer grained model



LDA Data Transformation



 $\{\ldots\}_{t-1}, \{\ldots, W_i, \ldots\}_t, \{\ldots\}_{t+1},$

25

Topic Ranking by User Interests

Rank topics by "strength"

$$rank(T_k) = f\left(\mu(T_k), \sigma(T_k), \alpha(T_k)\right)$$

$$topic$$

$$topic$$

$$variance$$

$$\sigma(T_k) = \frac{\sum_{m=1}^{M} N_m \hat{\theta}_{m,k}}{\sum_{m=1}^{M} N_m}$$

$$\sigma(T_k) = \sqrt{\frac{\sum_{m=1}^{M} N_m (\hat{\theta}_{m,k} - \mu(T_k))}{\sum_{m=1}^{M} N_m}}$$

Rank topics by "distinctiveness"

$$rank(T_k) = l(T_k) = \frac{\widetilde{v}_k^T L \widetilde{v}_k}{\widetilde{v}_k^T D \widetilde{v}_k}$$
 for each T_k , $v_k = (\hat{\theta}_{1,k}, \hat{\theta}_{2,k}, ..., \hat{\theta}_{M,k})^T$ matrix
$$\widetilde{v}_k$$
 is normalized v_k

Experiments

Goal

Measure which metric produces more "important" topics

Data sets

- Email
 - 8326 email messages
- News
 - 34,690 documents

Method

- Users indicate the importance of top-K ranked topics
 - Very important, somewhat important, Unimportant

Results

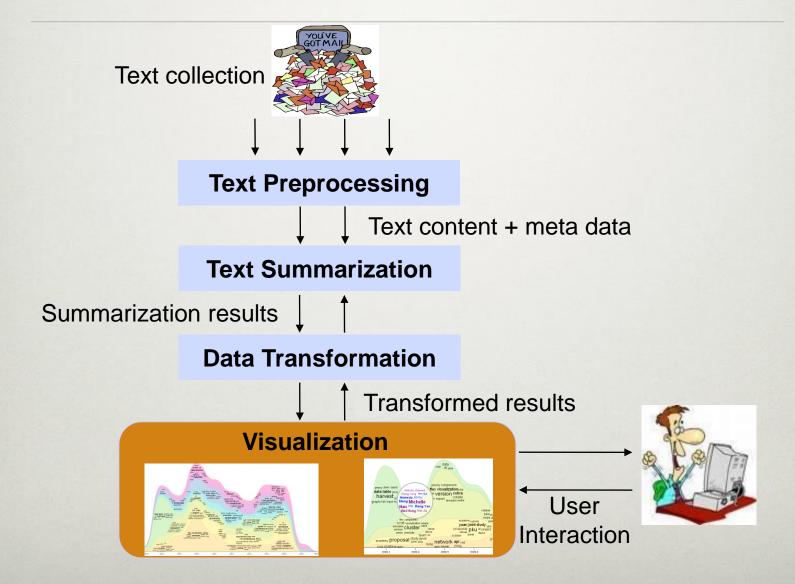
Email data (by F1 measure)

Retrieved	Top 5	Top 10
Strength	0.800 ± 0.000	0.620 ± 0.028
Distinctiveness	1.000 ± 0.000	0.780 ± 0.028
M.I.	0.760 ± 0.106	0.740 ± 0.035
T.S.	0.440 ± 0.057	0.480 ± 0.028

News data (by F1 measure)

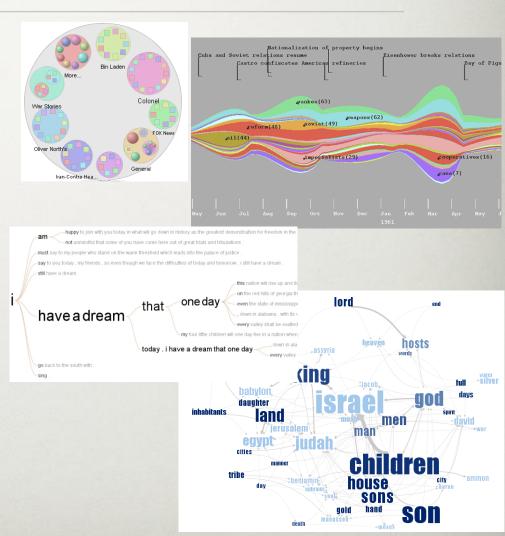
Retrieved	Top 5	Top 10
Strength	0.640 ± 0.057	0.68 ± 0.028
Distinctiveness	0.760 ± 0.057	0.76 ± 0.035
M.I.	0.760 ± 0.057	0.74 ± 0.035
T.S.	0.720 ± 0.069	0.70 ± 0.045

TIARA Technical Focus



Visualizing Text: Existing Work

- Visualize text at a high level
- Visualize text at a low level
- Few on explaining advanced text analysis results

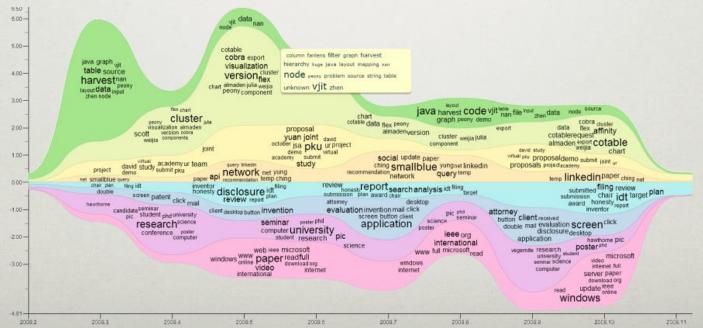


Visual Text Summary Metaphor

Data to be visualized:

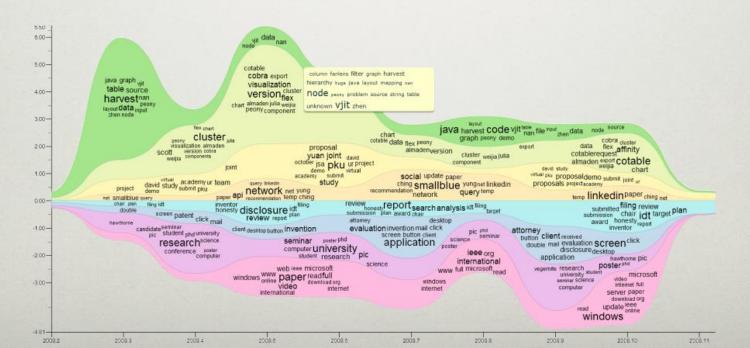
- 1. Topics: $\{T_1, ..., T_i, ..., T_N\}$ and their probabilities
- 2. For each T_i , Topic keywords by time: ... $\{..., w_k^i, ..., \}_t$, ... and their probabilities over time
- 3. For each T_i , Topic strength: $\{..., S^i(t), ...\}$ over time

Visual encoding: Augmented stacked graph



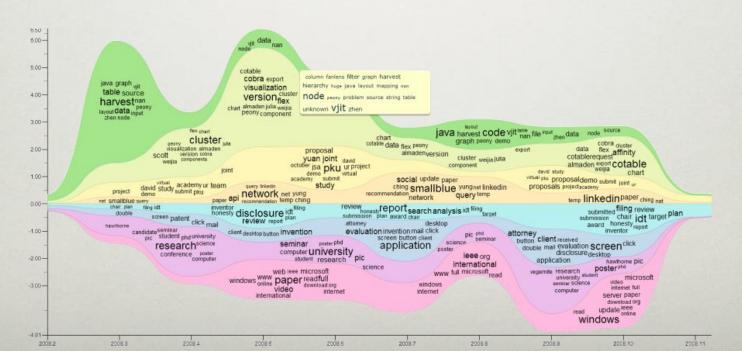
Enhanced Stacked Graph: Key Steps

- Computing geometry of layers
- Layer coloring
- Layer ordering
- Layer labeling



Enhanced Stacked Graph: Key Steps

- Computing geometry of layers
- Layer coloring
- Layer ordering
- Layer labeling

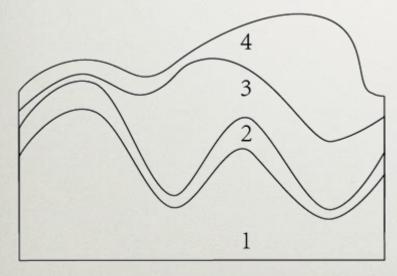


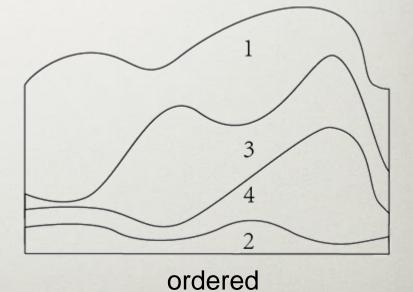
Byron_Infovis08

Layer Ordering

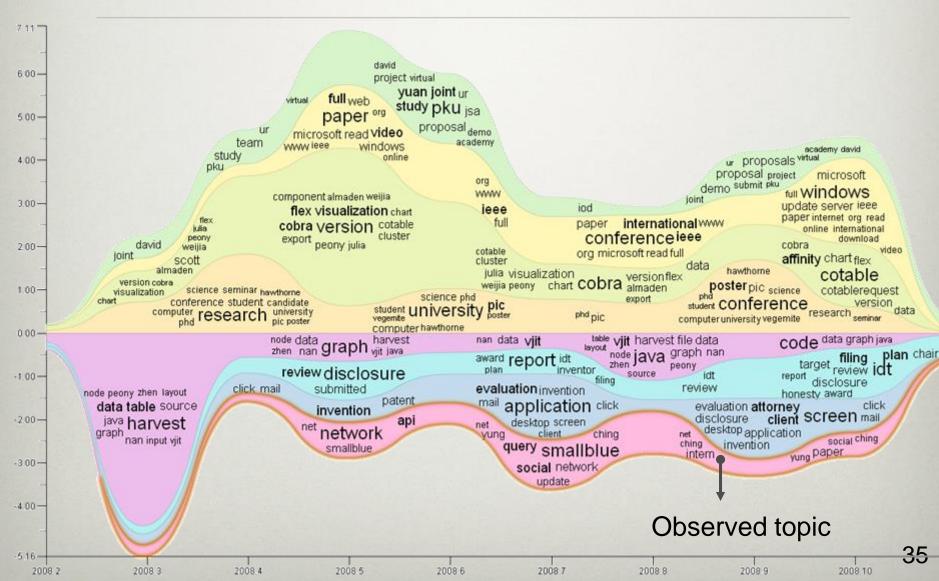
Goals

- Minimize distortion
- Maximize usable space
- Ensure semantic coherence





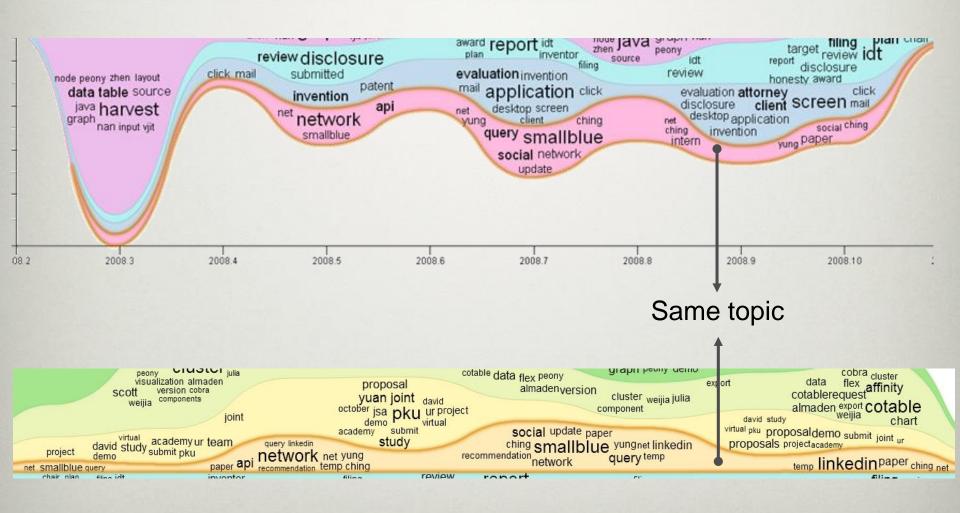
Layer Ordering - Comparison



Layer Ordering - Comparison



Layer Ordering - Comparison



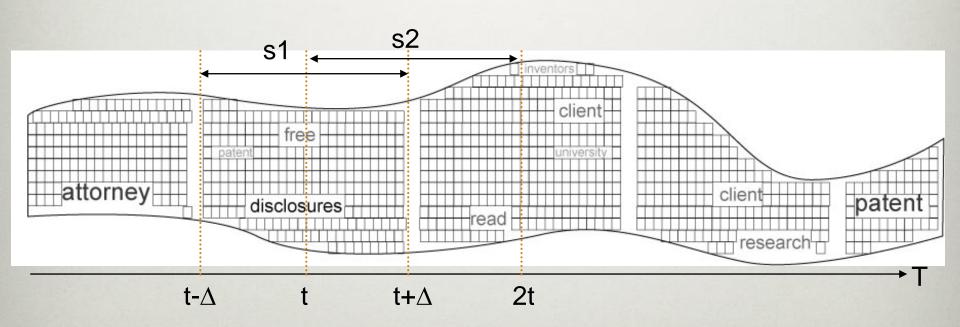
Enhanced Stacked Graph: Layer Labeling

Goals

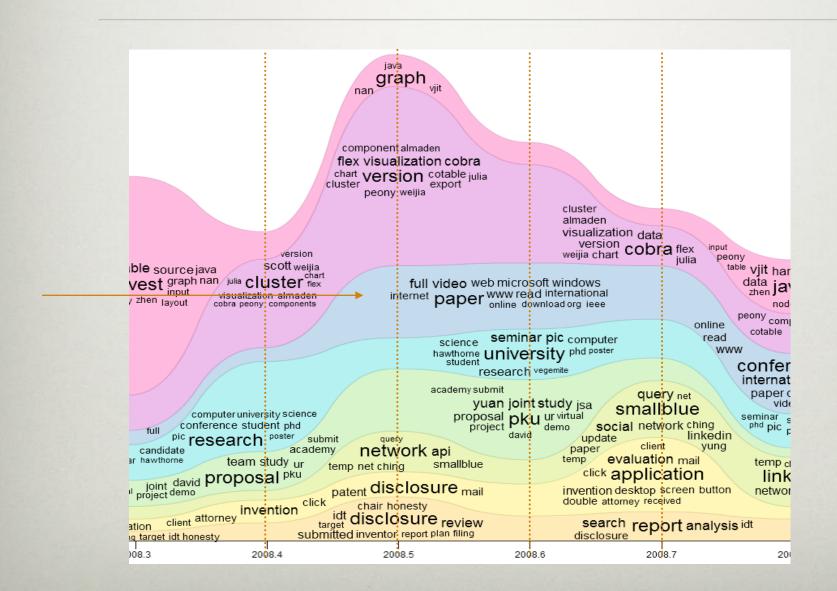
- Temporal proximity
- Informativeness

Enhanced Stacked Graph: Layer Labeling (cont'd)

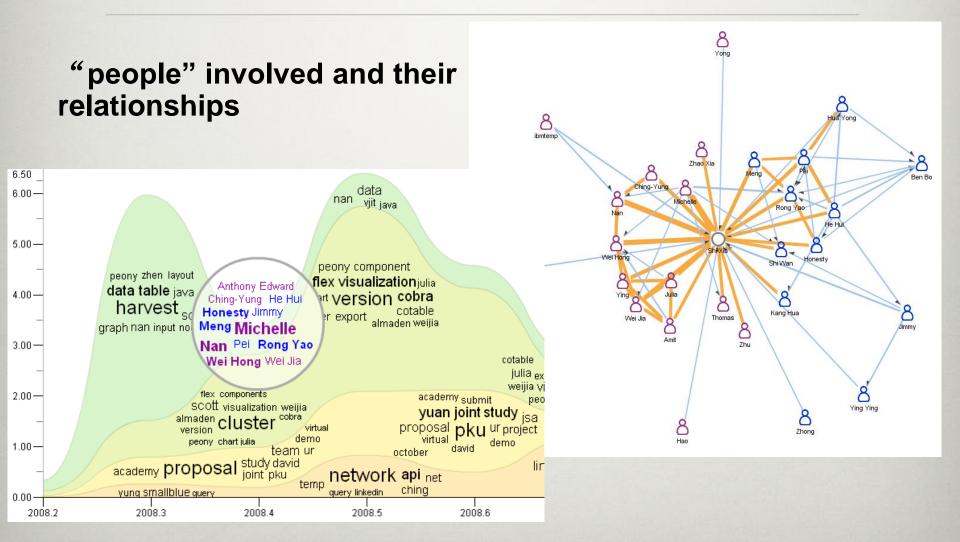
- Our approach [Liu et al. CIKM09]
 - Constraint-based space allocation
 - Particle-based layout [Luboschik et al. 08] + wordle



Enhanced Stacked Graph: Layer Labeling (cont'd)



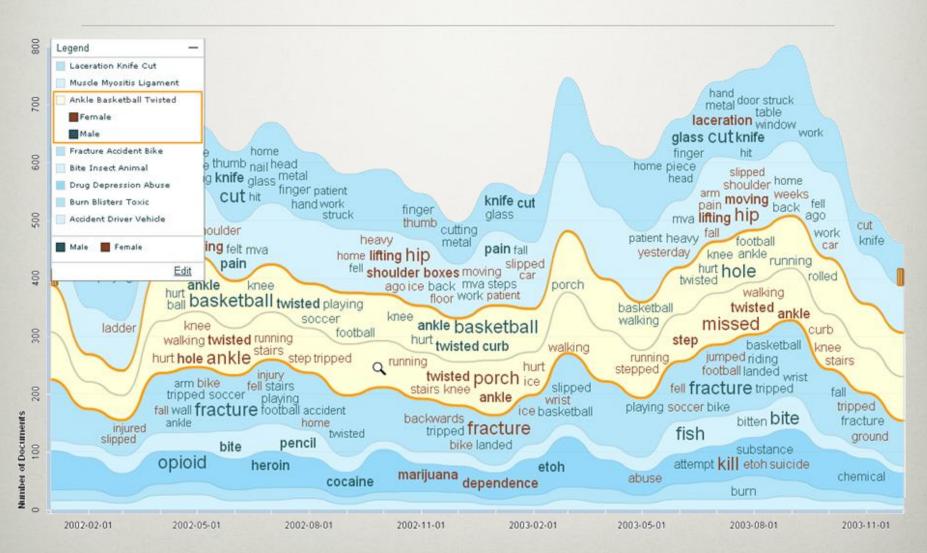
Interacting with Visual Summary



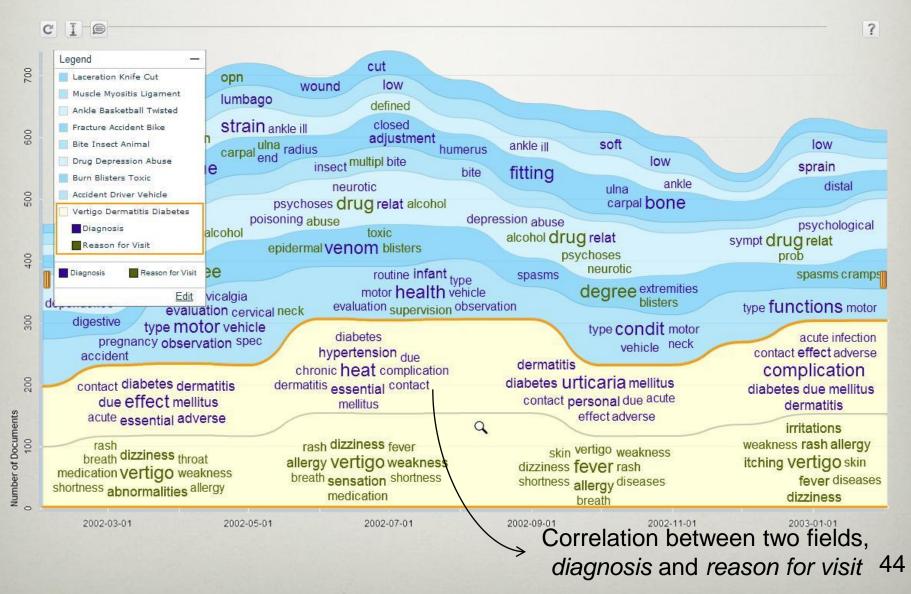
Application Example: Healthcare

- Visualize text to facilitate analysis
 - Cause of injury
 - Reason for visit
 - Diagnosis
- Multiple fields of text data and their correlation
- Leverage structured data to help better illustrate text information
 - Gender + Cause of injury

Correlation between Structured and Text Fields



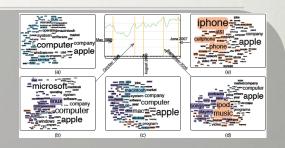
Correlation between Text Fields



Selected Projects

Dynamic word cloud

Illustrate content evolution trend

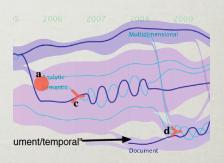


TIARA

Topic-based visual text summarization and analysis

TextFlow

 Towards better understanding of evolving topics in text



Problems

Understanding topic evolution in large text collections is important

- Keep abreast of hot, new, and intertwining topics
- Gain insight into the latent topics

Applications

Scholars

Find related works in a publication set

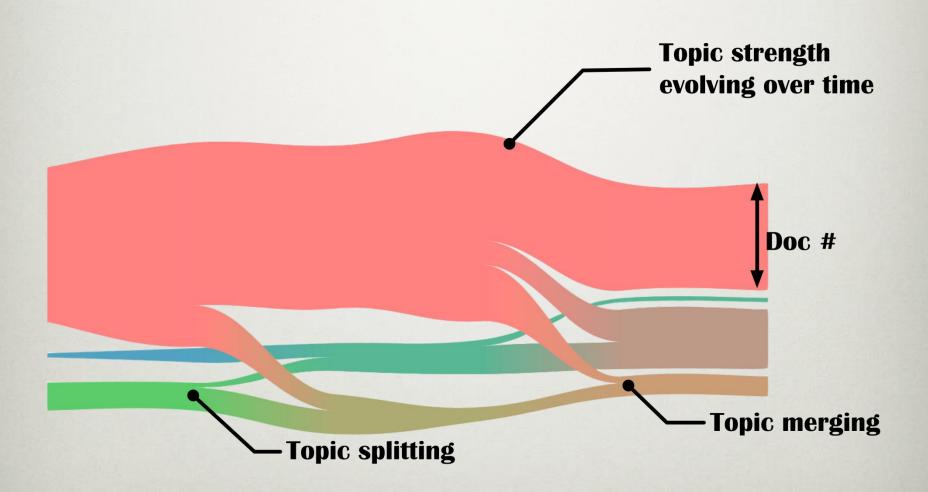
Business professional

Examine a large collection of emails and instant messages

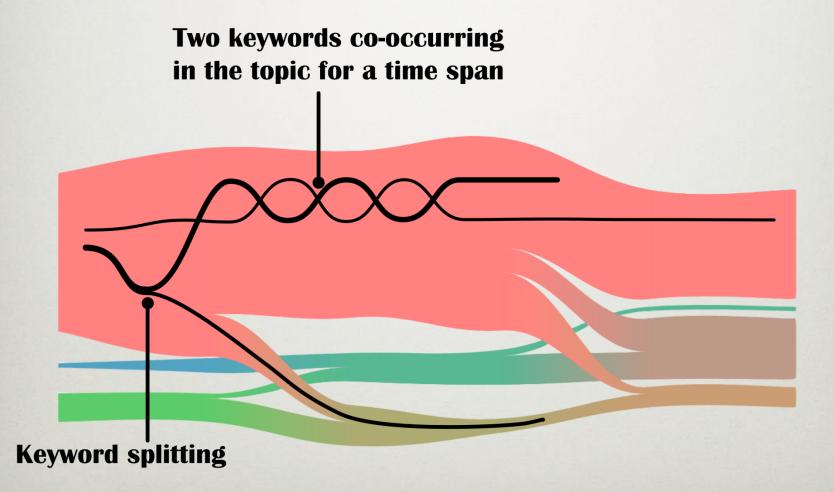
Politicians

 Examine online posts to identify the key public opinion and concern

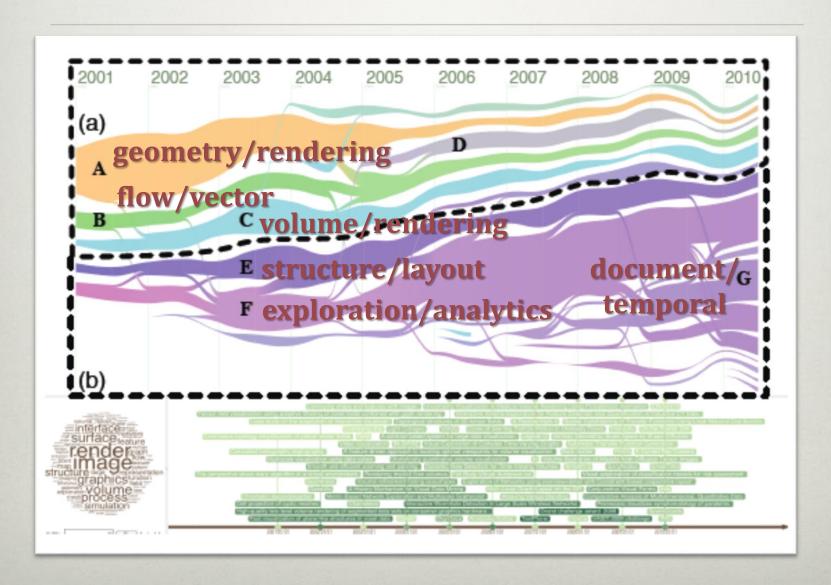
Example



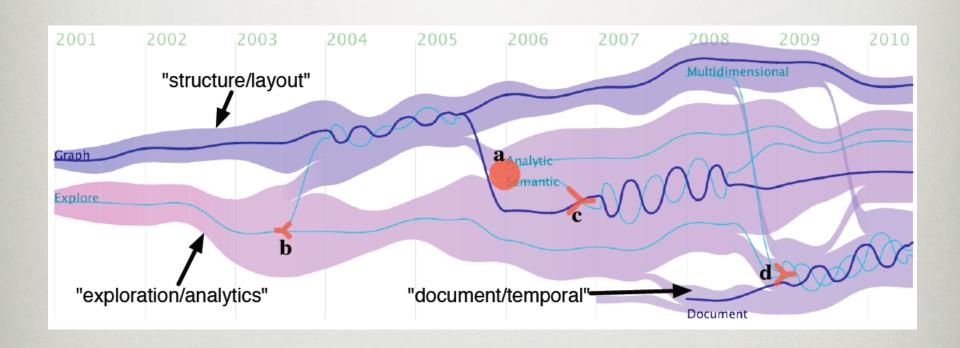
Example



Application Example: 933 VisWeek Pulications



Application Example: 933 VisWeek Pulications



Challenges

Model

Topic merging/splitting patterns

Visually convey

- Topic merging/splitting patterns in an intuitive way

Facilitate

Analytical reasoning

Related Work

Most of the existing work

Studying the evolution of individual topics

Little work

Studying topic merging and splitting patterns

Barely been touched

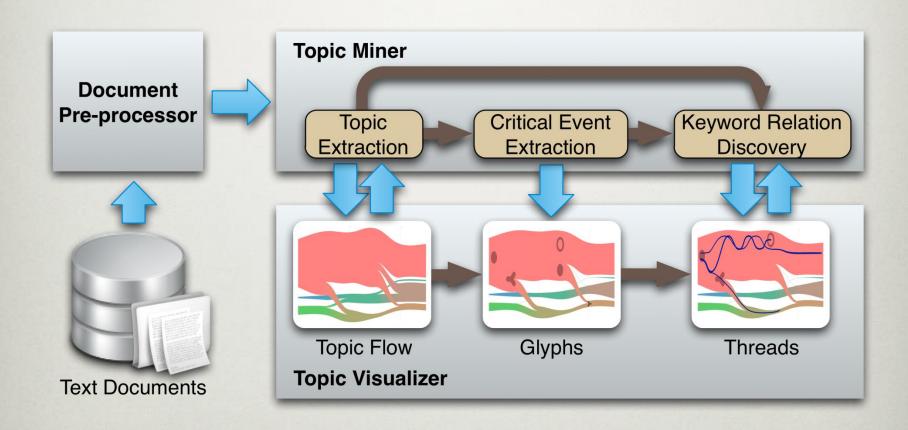
 Using visual analytics techniques to interactively analyze complex topic evolution

Our Solution

- Leverage hierarchical Dirichlet processes
 - To model topic merging/splitting
- Augment familiar visual metaphors (rivers)
 - To convey the complex analytic results

- Support interactions at different levels
 - Smooth communication between visualization and the topic mining model

TextFlow Overview

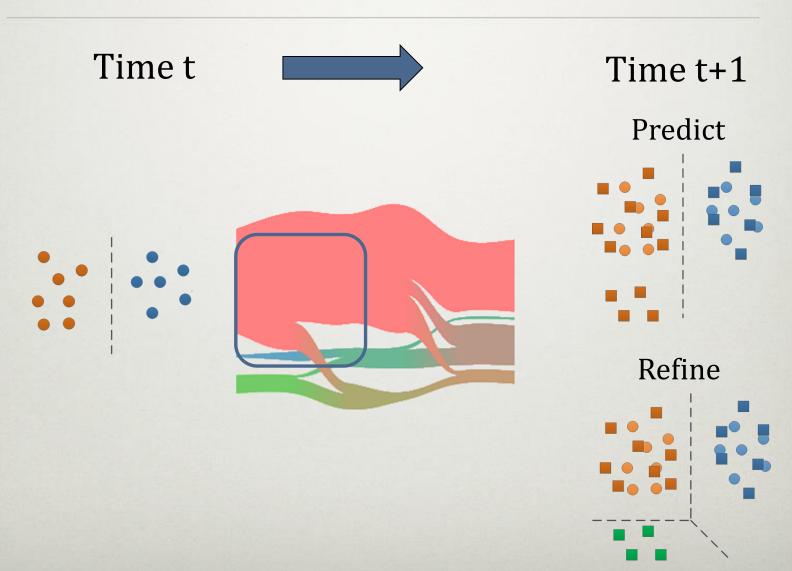


Topic Data and Relationship Extraction

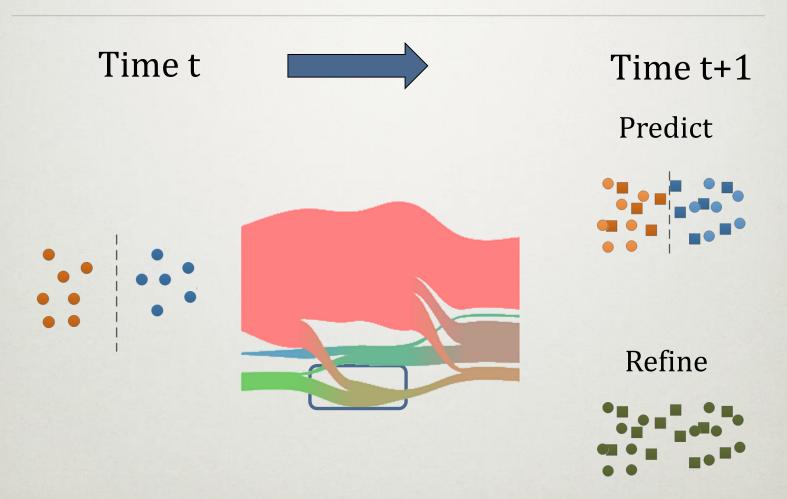
Incremental Hierarchical Dirichlet Processes

- Online learning of the topics in text
- Automatically detect the topic numbers
- Extract the merging/splitting relationships
 - Based on document topic change
 - Online compute the merging/splitting probabilities

Splitting Relationship



Merging Relationship



Critical Event Extraction

Types of critical events

- Birth, death, merge, and split

Scoring the merging/splitting event

- Number of the branches
- Entropy of the branching probabilities

Keyword Correlation Discovery

Extract

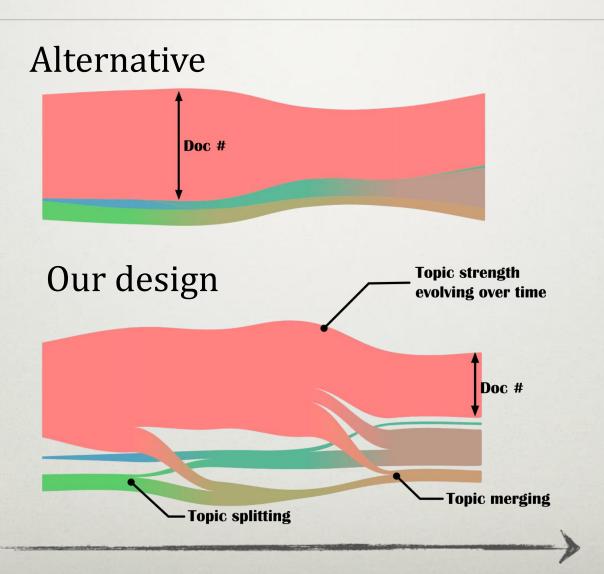
noun phrases, verb phrases, and named entities in each document

Count

Co-occurrences among them

Be used to illustrate "why"

Topic Evolution as Flow

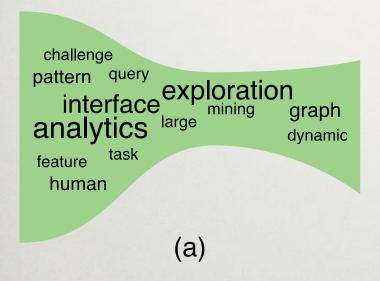


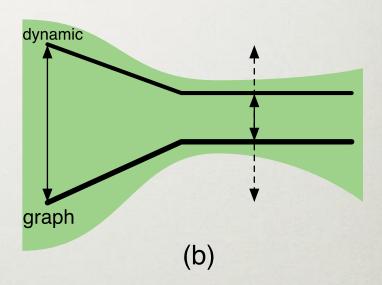
Critical Event as Glyph

Emerge, dissolve, split, and merge

Keyword Correlation as Thread

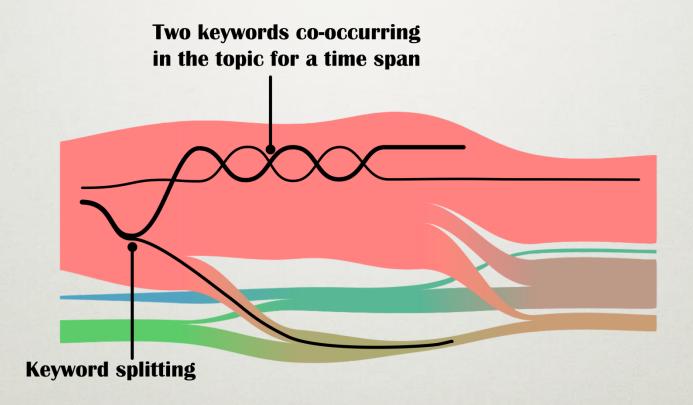
Alternatives



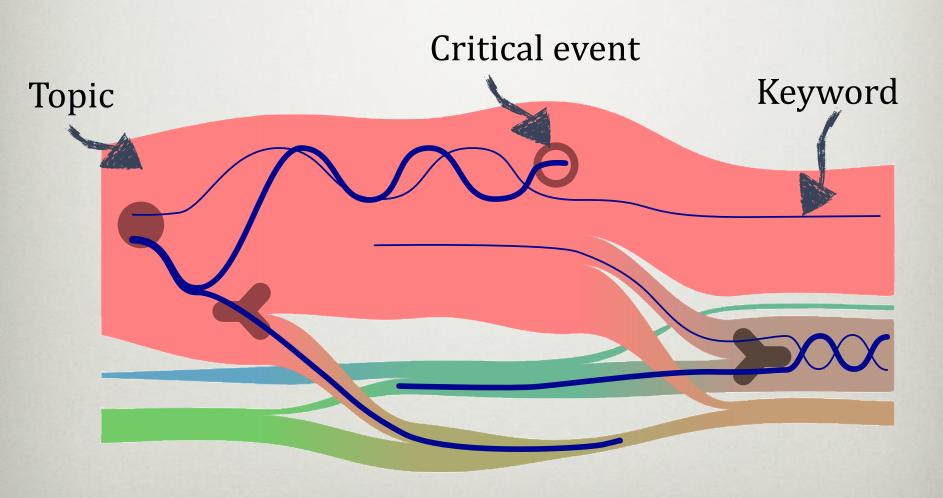


Keyword Correlation as Thread

Intertwine to indicate co-occurrences

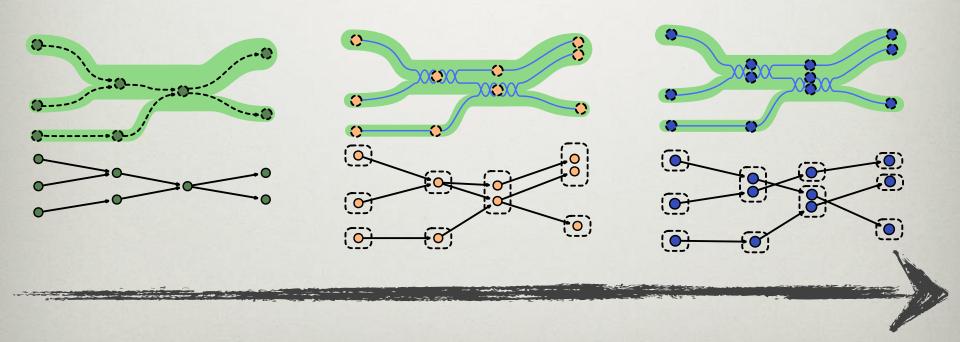


Visualization Design - Consistency

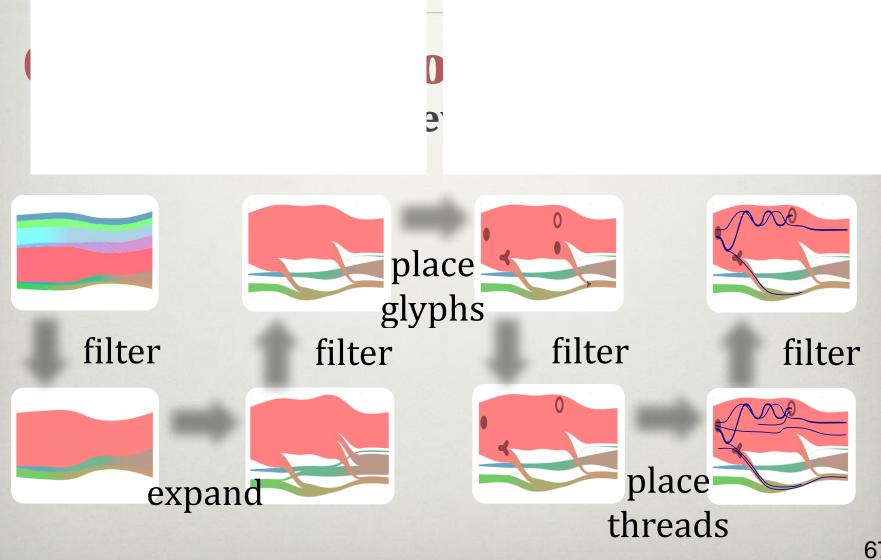


Layout Algorithm

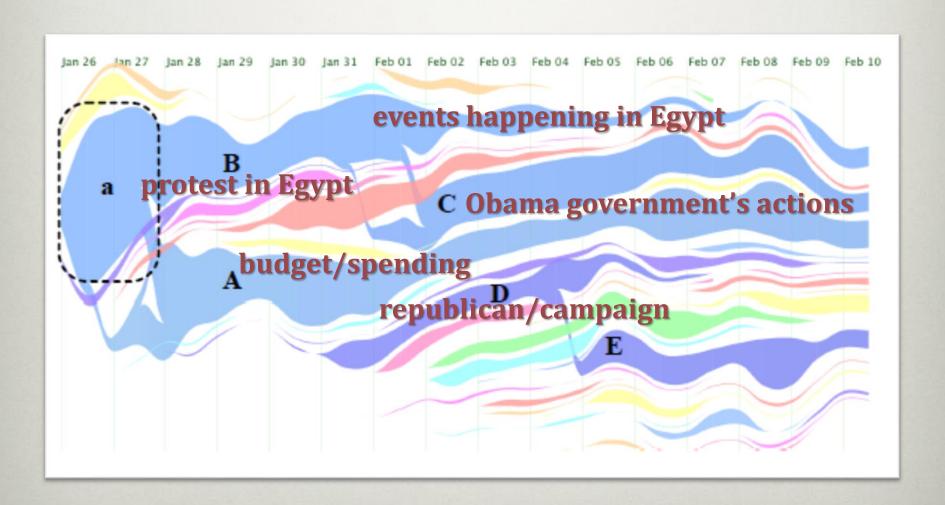
Three-level directed acyclic graph (DAG)



Interactive Exploration

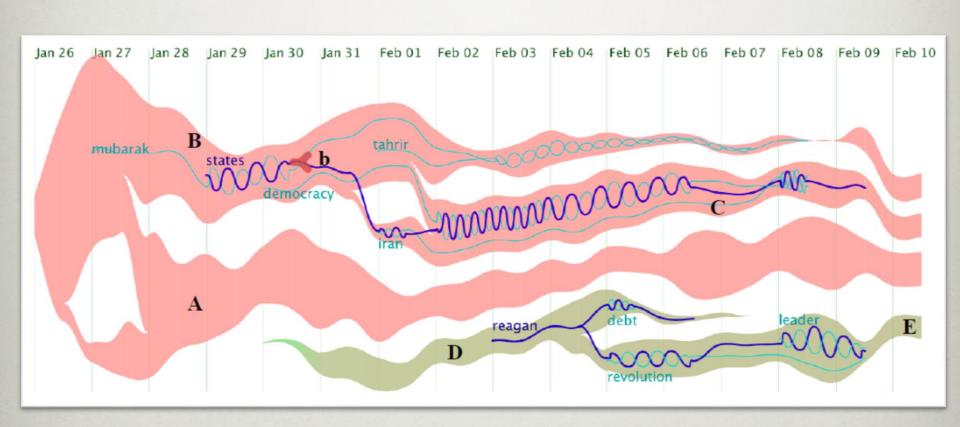


Application Example: Bing News

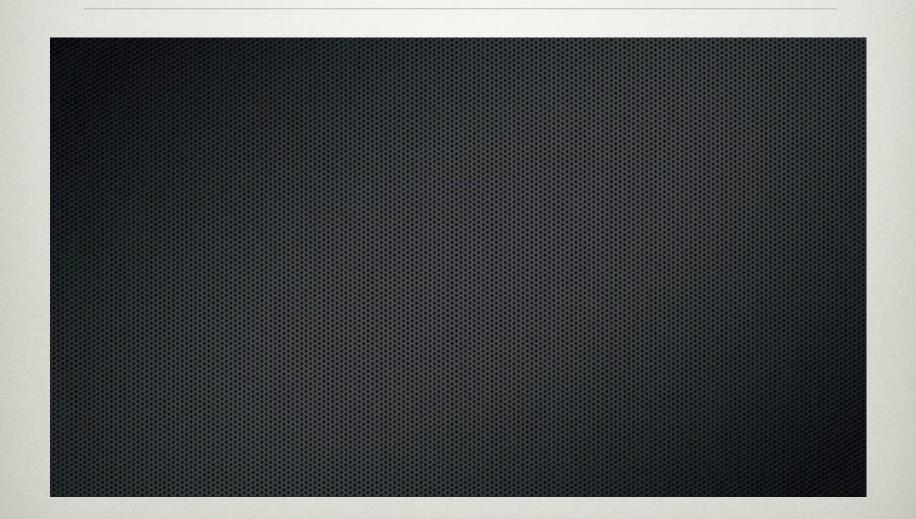


Application Example: Bing News

Application Example: Bing News



Video



Outline

- Example tasks in text analytics
- Visually analyzing textual information
 - Dynamic word clouds
 - Topic-based visual text summarization
 - TextFlow: towards better understanding of evolving topics in text
- Future work

Future Text Visualization Topics

- Interactive, incremental text analytics
- Multi-level visual text summarization (keywords + sentences)
- Multi-faceted text analytics (e.g., summarization + sentimental analysis)
- Multimedia document summarization (text + image + video)
- Interactive, visual social media analysis

Acknowledgements

Weiwei Cui, Yangqiu Song, Furu Wei, Xin Tong (MSRA) Nan Cao, Yingcai Wu, Prof. Huamin Qu (HKUST) Dr. Michelle X Zhou (IBM Almaden Research Center)

